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LETTER TO THE EDITOR 

An adsorption-desorption process on a line: kinetics of the 
approach to closest packing 

X Jint, G Tarjust and J Taltmtt 
t School of Chemical Engineerin%, Fwdue University, West Lafayem, IN 47907. USA 
t Laboratoire de Physique Wcniqoe des Liquides*, Universit6 Pierre et Made Curie, 4 place 
JDssieu 75252, Paris Cedex 05. Fmce 

Received 1 November 1993 

Abstrncf. We sludy an adsorption-iesorption process of rods on a line. The desorption rate 
is iufinilely small. M) that each desorption event is instanlly followed by the inserhn of one 01 

two new mds. Due to the latter possibility. the system evolves wn~wusly  to a close-packed 
sfate. Thc asymptotic kinetics of the densification process is analysed with the aid of gap 
distribution functians. If it is assumed thar U& system relaxes wmpletely to equilibrium after 
each density increment, we show that 1 -.p(t) - l/ln(t), while an improved description yields 
1 - p ( t )  .- l/h(2t(I112t)~). The range of validity of the asymptotic expressions is established 
by wmparison with the results of a numerical sirnulalion of the pmcess. 

Our understanding of irreversible adsorption processes  has^ grown considerably during the 
last few years. Much of the efforC has focused on the random sequential adsorption (RSA) 
process [l]. Some recent ex&rimental studies have verified, at least to a degree, the 
predictions of thi.s model for the adsorption kinetics of the protein transfer on oxide surfaces 
[Z]. The simple RSA model is completely irreversible: no relaxation processes of any kind 
are allowed. Although, in the above example the adsorption is manifestly irreversible, in 
many other situations it is expected that surface df is ion and/or desorption are significant. 
It is clearly of interest, therefore, to extend the RSA models to incorporate these cases. 
Tarjus et a! [3] considered the effect of these two mechanisms (independently) on the RSA 
kinetics in the low-to-intermediate density regime. More recently, F’rivman and Barma [4] 
developed a fast-diffusion mean-field approximation for the kinetics of deposition of rods 
on a linear snbstmte with diffusional relaxation. 

In this letter, we examine the adsorption4esorption process of rods on a linear substrate. 
Hard rods adsorb randomly and sequentially at a rate k, and desorb at a rate kd. Unlike 
the simple RSA model (kd = 0). it appears that analytic solutions of this model, even in ID, 
are not feasible. However, one may make considerable progress for a special case of this 
model; namely for kd + 0, i.e. an infinitely slow desorption rate. We imagine that such 
a pmess starts at t = 0 on an empty line. In the initial phase of the process there is no 
desorption, but an infinite number of sequential adsorption attempts. The system, therefore, 
evolves exactly like the simple RSA process and reaches a jammed state a a density of 
0, = 0.747.. . [5J. The initial phase is followed by a succession of desorption-udsorption 
events in which one rod detaches from the surface and the resulting hole is filled by either 
one or two new rods. Because the latter possibility results in an increase of the number of 
adsorbed particles, the system evolves continuously towards a close-packed state, p = 1. 
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The rods desorb randomly, and, in patticular, independently of the time over which they 
have been adsorhed. 

To analyse the kinetics of this densification process, we introduce the following 
quantities. The unit of time is k;', or the number of desorption-adsorption events. Let 
G(h, t )  denote the density of gaps of length h, and G(h1, . . , , h., t )  the n-gap density such 
that all gaps of length hl. ht, . . . , h, are ordered from left to right on the line and that any 
given gap in the sequence is separated from its next neighbour by one Tod. Because the 
configurations are always jammed, G(h, t) = 0 for h z 1, and G(h1,. .. , h., t )  = 0 if 
3 i E 11,. . . , n), hi z 1. These density functions satisfy the following relations: 

i m d h  G(h, t )  = ~ ( t )  ~ODdhhG(h,t)  = 1 - p ( t )  (1) 

and 

i m d h l  G ( h .  .-.,hn, t )  = p(t)G(hz,. .., h.,O 

imdh.G(hl, ..., h.-l,h,,t) =~(t)G(hl ,  ..., h,-l,t). 
(2) 

The rate equation for G(h, r) can be written as 

The first term on the right-hand side of the above equation corresponds to a relaxation at 
constant density, and the other to a densification mechanism. In the former, a desorbing rod 
is replaced with only one new rod, whatever the available space, while the latter takes into 
account situations in which a desorption event creates a gap of length z 2 and two new 
rods can be inserted instead of one. Similar rate equations can be written for higher-order 
gap densities. In what follows, we examine first the two mechanisms separately, but one 
must recall that they are coupled. 

Relarotion ut constunt densify. The kine& in this %e are described by a hierachy of 
equations, 

(F), = -2G(h, r )  + - / O D  ih'dh" G(h". h' - h", t )  
P k  

1 k+h' ( " ( ~ ~  t ) )o  = -3G(h, h', t )  + - + h, dh"G(h", h + h' - hN. t )  

m &,I h" +'/ L' h' 
dh"'G(h, h'", h" - h", t) 

m d h r r  h" 
dh"' G(h"'. h" - h"', h', t) 

(4) 

etc, which we may understand as follows. Consider, for instance, equation (4). Gaps of 
length h are destroyed by desorption of either one of the surrounding rods, and created 
by the re-insertion of rods into a larger gap. The probability that adsorption of the only 
additional patticle in the length h' + 1 will create an interval of length between h and h +dh 
is 2dh jh' and p-I l ,  dh" G(h", h' - h", t) is the density of gaps of length h' + 1 created 
by desorption of one particle. It is easy to verify by integration of (4) and use of (1) and 
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(2)  that the zeroth and first moments of G(h, t )  ( p  and 1 - p. respectively) are independent 
of time. If we totally neglect the densification mechanism, the system evolves at constant 
density p until it reaches a state corresponding to the stationary solution of the hierachy, 
equations (4) and (5). We find that the equilibrated state characterized by [6] 

G‘(h1, bf.9 hn, P )  = P ) .  . .GYhn,  P )  (6) 
with 

Gq(h, p) = - ’* e x p ( - p h )  h a 0  
1 - P  1 - p  

(7) 

is the stationary solution of the hierachy. We note that the superposition property, implied 
by (6). of the equilibrium configurations is nor valid for those of the RSA process 171. 
Since the destruction rates in (4) and (5) are independent of the gap lengths, one expects 
the approach towards equilibrium to be exponential. As a first approximation, it is indeed 
possibIe to show that the relaxation goes asymptotically as exp(-$t). 

Dens$cation mechanism. The densification kinetics for G(h , t )  are governed by the 
following equations: 

( 0  h > 2  

I 
where we have introduced 

h 
p(t)g(h, t )  = 1 dh’ G(h‘, h - h’, t) (9) 

and the property that G(h, t )  = 0 for h > 1. The above equations are derived by considering 
that one and only one additional rod can be inserted in the holes left vacant by the relaxation 
step. For such a hole of length h’ (with a density (aG(h’, t)/Bt),dh’), the probabiity that 
the additional particle will create a gap of length between h and h + dh (on the right, or 
the left) is 2dh/(h‘ - l), if 2 > h’ h + 1 and h < 1. Similar equations can be obtained 
for higher-order gap densities. As a result of the densification step, the density of particles 
increases at a rate equal to the number of holes which can accommodate an additional 
particle and are left after the relaxation step. Hence, 

where we have made use of (8). This equation also has a simple physical interpretation: 
the integrand represents the density of particles surrounded on the left and right by gaps of 
totaI Iength h times the probability that when that particle desorbs, two particles wiU fill 
the vacated space. 

The full process is described by considering the net result of the relaxation and the 
densification steps, which gives for the gap distribution function 

-- dG(h’ t ,  - G(h, t ) ,  = 0 
~ h =- I 

dt 
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together with (10). In the full process, the relaxation and the densification mechanisms 
are fully coupled. However, at large times and densities close to one, we expect that the 
relaxation step is much more efficient, and hence faster, than the densification step. This 
idea guides our treatment of the problem. 

amth-order description. We assume that the system relaxes fully to equilibrium after each 
successful addition. For a density p of adsorbed particles, the fraction of the line which is 
available to the centre of an additional rod is 

m 

= $YP) = 1 dh (h - W Y h ,  P) = (1 - P)exp(-p/(l- PI )  (13) 

where we have used the equilibrium distribution (7). The time evolution of the adsorbed 
particles is thus giyen by 

(14) dp - = (1 - p)exp(--P/(l- P ) )  dt 
which is exactly the equation obtained by Privman and Barma in their mean-field treatment 
of an adsorbing system with fast diffusional relaxation [41. The approach towards the 
closepacking (p = 1) configuration is slow: 

Zmproved description. The actual process is slightly faster than that given by (15) since one 
does not have to wait for a full equilibration of the system before inserting an additional 
particle: as soon as any gap larger than one appears it is instantanmusly filled. Therefore, 
in developing an improved description we require that all n-gap densities be zero at any 
time whenever one gap is larger than one. Furthermore, we note that for gaps smaller than 
one, the relaxation process is much faster than that induced by the densification process 
(roughly exp(-$t) - exp(-$exp(l/(l - p))  and l/In(t) - 1 - p, respectively.) As a 
consequence of these two observations, we make the following approximation: 

G(h, t) M GCQ(h, p(t)) 
G(h,t)=O h > l  

G(h, h', t )  M Gq(h, h', P O ) )  = G"l(h, p( t ) )O(h ' ,  p( t ) )  

0 < h e 1 
(16) 

(17) 
0 6 h, h' e 1 

G(h, h', t )  = 0 
From (9) and (10) we find 

,h  > 1 or h' > 1 . 

(18) 
dp - = 2exp(-p/(l- p)) . df 

The leadiig tem in the asymptotic behaviour is then 

In order to verify the asymptotic behaviour and establish the density at which the 
asymptotic behaviour begins, we have performed a numerical simulation of the adsorption- 
desorption process. In the first step, ajammed RSA configuration of rods was generated on 
an open interval of lengih L (in units of the rod diameter). The adsorption4esorption phase 
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N g u ~  1. Simulation of the desorption-adsorpion pracess. The simulations were performed 
on an open line segment oP length L = SO0 rod diameters. Each point is an average over 
80 independent simulations. PLOD (a) and (b) test the moth order and impmved asymptotic 
kinetics, rrspectively. 
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F w  2. Density as a hurnion of time. 'Ihe simula!ion results ( N n m  = lo7. L = 500. Nhv = 
80) are shown by the symbols. ?he lines are. from top to bottom, 1 - l/ln(21(ln~)~). 
1 -.l/ln(Zt), and 1 - l/ln(t), respectively. 

then begins. A randomly selected rod is removed from the surface and a new rod is inserted 
randomly and uniformly in the resulting gap. If, after this step, a gap of length greater than 
one exists to the left or right of the newly inserted particle, a second rod is randomly 
placed to fill this gap. The unit of time is defined as t = N D ~ / L ,  where N D ~  denotes 
the number of adsorption-desorption events. A number of independent runs are performed 
to obtain good statistics. The results shown in figure 1 c o n k  the analysis presented 
above. A plot of p versus l/ln(t) displays a linear region above a density of about 0.91. 
A least-squares fit of the data for 0.907 e p < 0.948 yields an intercept of 0.982 and slope 
-0.43. A similar plot, but with the abscissa replaced with l /h(2t(ln(2t))z) ,  shows that 
(19) does indeed have a larger range of validity: the liiear region persists to lower densities, 
and a least-squares fit of the data for the same range of density as above has an intercept 
of 1.0005 and slope of -0.947. The greater accuracy of (19) is even more dramatically 
illustrated in figure 2 which shows p versus t.  This excellent agreement confirms that the 
adsorption-desorption process with vanishingly small desorption approaches close packing 
with a slow logarithmic behaviour similar to that predicted for an adsorption with very fast 
diffusional relaxation. It also suggests that (16) and (17) represent a good description of 
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the gap densities even when the system is 10% below close packing. 
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